ANEXO 10 ESTUDIO Y DISEÑO DEL PAVIMENTO DE LA VIA

CONTENIDO

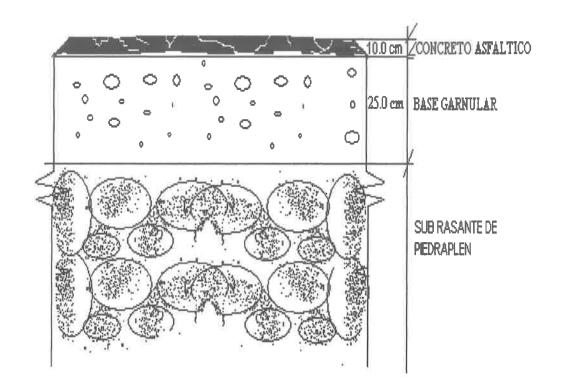
DISEÑO DE ESTRUCTURAS DE PAVIMENTO	, 1
SECCION DE PAVIMENTO EXISTENTE	2
SECCIONES PROPUESTAS DE PAVIMENTO ASFALTICO	, 3
CALCULO DE ESALS.	11
SELECCIÓN DE PAVIMENTO PARA EL PROYECTO	12
SECCION TIPO DE PAVIMENTO ASFALTICO	15
SECCION TIPO DE PAVIMENTO DE CONCRETO HIDRAULICO	16

DISEÑO DE ESTRUCTURAS DE PAVIMENTOS

El diseño de la estructura del pavimento esta compuesta de dos partes básicamente:

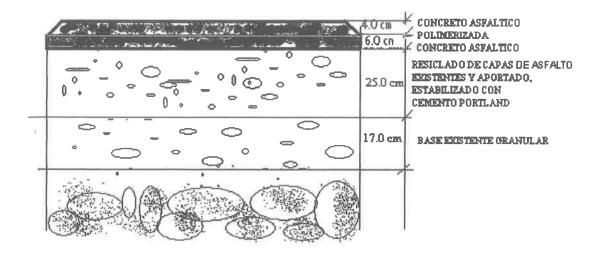
- 1. La evaluación de la estructura existente
- 2. El diseño o configuración de capas de la estructura futura basada en el trafico proyectado para 20 años y el soporte de la sub-rasante natural o colocada

1-La evaluación de la estructura existente

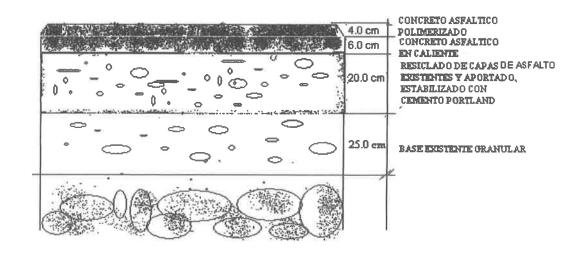

En el primer caso la parte de la evaluación en el campo consiste en las mediciones de deflexiones, observaciones del estado de la superficie, exploraciones por excavaciones del pavimento asfáltico (base y sub-rasante), ensayos de CBR en campo, toma de muestras para ensayos en el laboratorio, obtención de núcleos de la capa asfáltica y observaciones de la influencia del drenaje y humedad sobre la estructura.

Con los datos mencionados anteriormente se realizo un cálculo y estimación del valor estructural del pavimento (SN) que incluye la suma de las 2 capas existentes con su respectivos coeficientes estructurales y espesores. También se tomo en cuenta el valor de SN del pavimento total proporcionado por el MOP, mediante el uso del equipo FWD. Los valores calculados por la empresa fue de 2.36 y del MOP de 2.2 a 2.3 (Ver esquemas a continuación).

2-Diseño o configuración de capas de la estructura futura


En el segundo caso tomando en cuenta los valores físicos del material de las capas obtenidas en el campo y laboratorio, la proyección del trafico de 20 años convertidos a ESAL y el soporte de la sub-rasante se encuentra el SN requerido para los 20,344,560 ejes equivalentes y el valor asumido de resiliencia de la sub-rasante entre 24,249 psi. Y 17,579 psi. Se encuentra los valores requeridos del SN de 3.64 a 4.10 (ver cálculos en siguiente pagina "FLEXIBLE PAVEMENT ANALYSIS"). Cuando se combina estos requisitos con la experiencia de métodos de construcción en el país el

Cuando se combina estos requisitos con la experiencia de métodos de construcción en el país el proceso de selecciones de soluciones comienza a tomar forma para el diseño una estructura que dure los 20 años.


SECCION DEL PAVIMENTO EXISTENTE

ALTERNATIVA "A"

SECCION DEL PAVIMENTO PROYECTADO

ALTERNATIVA "B"

SECCION DE PAVIMENTO PROYECTADO

ESTRUCTURA DEL

ESTRUCTURA DEL PAVIMENTO EXISTENTE PAVIMENTO A CONSTRUIR

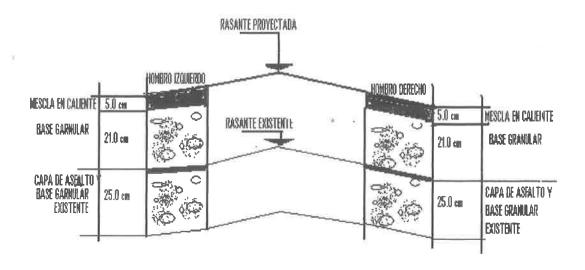
ALTERNATIVA "A"

					RASANT	0]	ROYECTADA				
						-	1	cm	hny	neficinte	SIL TIOU CAUDA
							CONCRETO POLIMERIZADO	4.0	1.57	0.44	0.69
					14		CONCRETO ASTALINO	6.0	2.36	0.44	1.04
RASANTE EX	STENTE							7.0	2.76		
_		cm	pul	e coeficinte	DOLCADS 207		BASE MESCLADA				
	alio Sienie	10.0	3.93	0.30	1.18		estabilizad a con cemento periland espesor de	10.0	3.93	0.19	1.87
BAS CBR	E DE	25.0	9.84	0.12	1.18		250 cm = 934 yul	å.O	3.14		
85								17.0	6.7	0.12	0.80
	ANTE Draplen			•							

TOTAL DE SN 2.36

TOTAL DE SN 4,40

ESTRUCTURA DEL ESTRUCTURA DEL PAVIMENTO EXISTENTE PAVIMENTO A CONSTRUIR


ALTERNATIVA"B"

				RAS PROV	ANTE ECTADA			
		¥					ul e coeficinte	DCL CALFA
					CONCRETO POLIMERIZADO	4.0 1.5	0.44	0.69
					CONCRETO ASPALINO	6.0 2.3	0.44	1.04
RASANTE	cm	hnl	e coeficinte	Sh.	BASE MESCLADA Y ESTABILIZADA CON	10.0 3.9	3 0.19	1.50
ASSALIO EXISTENTE	10.0	3.93	0.30	1.18	CEMENTO PORTLAND ESPESOR DE 20.0cm=7.87pi	10.0 3.9 :1		1.30
BASE DE CBR 85	25.0	9.85	0.12	1.18	BASE GRANULAR EXSTENTE	25.0	0.12	1.18
SUB RASANTE PIEDRAPLEN								
		TO	TAL DE SN	1 2.36	ļl.		OTAL DE SI	N 441

TOTAL DE SN 2.36

ESTRUCTURA DE HOMBRO

ESTRUCTURA DE HOMBRO DERECHO E IZQUIERDO

MESCLA EN CALIENTE	CM 5.0 cm	PUL 1.97	COERCIENTE 0.40	SN POR CAPA 0.79
BASE GRANULAR	21.0 cm	8.27	0.12	1.00
BASE GARNULAR EXISTENTE 	25.0 car	9.84	0.12	1.18
,			TOTAL DE S	SN 2.97

VALOR ESTRUCTURAL CALCULADO DE HOMBRO IZQUIERDO Y DERECHO

Las condiciones como base para el diseño de la estructura son los siguientes:

La calidad de la base granular es buena con un CBR de alrededor del 85 y espesor de 25 cm., la sub-rasante, básicamente es un piedra-plen formado probablemente en fase de construcción del proyecto actual, posiblemente por la pobre condición del suelo o condición de saturación, por lo menos en las excavaciones de los pozos de cielo abierto es la evidencia presentada. Lo que es de poco valor es lo referente a la capa asfáltica actual la cual esta agrietada en su mayoría y se observa una gran cantidad de bacheo realizado anteriormente. La capa asfáltica existente cuenta con un espesor normalmente de 10 cm. la cual esta conformada por 2 o más capas.

La experiencia en el país de hacer un recarpeteo sobre una capa asfáltica dañada no ha sido favorable. Una solución más económica debería ser la utilización al máximo el material en la estructura del pavimento existente. Siguiendo esta lógica una solución es de reciclar la capa asfáltica conjuntamente con parte de la base o solamente la capa asfáltica y una parte de base granular. La nueva capa reciclada será una capa de material de base estabilizada con cemento Pórtland.

Debe protegerse esta nueva capa estabilizada con una capa de material de un coeficiente estructural mas alto y al mismo tiempo formar la superficie de rodamiento, entonces se coloca esta capa asfáltica compuesta de dos capas, una de asfalto en caliente de mezcla abierta y sobre esta una de alta resistencia contra ahuellamiento y agrietamiento que contiene la adición de polímeros en la mezcla en la forma de SBS. Este elastomer contiene Styring para evitar el ahuellamiento por el tráfico de la rueda en la misma trayectoria cuando el pavimento se caliente por el sol y la Butadine que evitaría el a-agrietamiento. La clasificación de asfalto líquido debe ser por lo menos un PG de 76-22.

A continuación se presenta un esquema de una sección de pavimento existente, luego un esquema de la sección de pavimento proyectada con alternativa A y B, y en seguida un esquema comparativa de la estructura de l pavimento existente con la estructura del pavimento a construir que presenta los valores del SN en los dos casos. El análisis es también para la alternativa A y B.

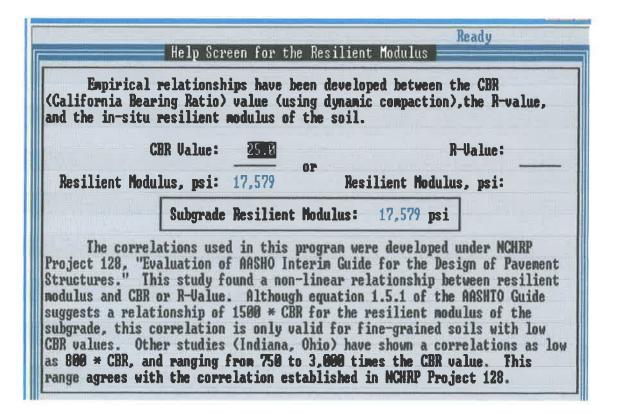
Se puede notar que el valor del SN del existente es la mitad de lo proyectado.

Para encontrar el valor de E: coeficiente estructural de la capa de reciclado estabilizado con cemento Pórtland (indicada en los cálculos del esquema de pavimento a construir), se realizara una mezcla de base y asfalto tomada del campo compactado en un cilindro de 6" de diámetro y a los 7 días resultó en una compresión de 600psi, lo cual corresponde a un valor de 0.19.

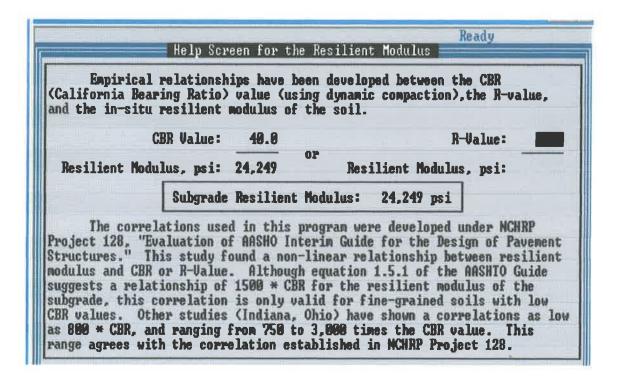
Se incluye adjuntando el cuadro de cálculo de ESAL, cuyo valor fue utilizado en el cálculo computarizado de los valores de SN.

En los siguientes ejemplos se muestra el cálculo por el programa de computación, la determinación del valor de SN requeridos según los parámetros indicado.

Se han utilizado dos valores de resiliencia de la sub-rasante, uno con un CBR de 40 y otro de 25. (Tal como se menciono anteriormente el SN requerido es 3.64 y 4.10 respectivamente). Los valores de SN para la solución para la construcción son igual ó mayor que los valores requeridos.


Según la guía AASHTO 1993 el espesor de concreto asfáltico como mínimo es de 4" para ESAL mayor que 7,000,000, entonces esta capa de 10 cm. (4 pulgadas), se conformaría primero con en una capa de 6 cms., de mezcla caliente abierta con plastomeros, que protegerá contra pequeñas fisuras de la caja estabilizada con cemento y la última 4 cm., de mezcla en caliente con asfalto polimerizado con elastómeros con las ventajas ya mencionadas.

Hasta este momento en la explicación de pavimentos se ha detallado aspectos solamente de los carriles de rodamiento que soportan la mayoría del Transito.


El esquema último adjunto se detallan los aspectos estructurales de los hombros. Los hombros externos cuentan con una base de asfalto de 5cm., y una base granular de 25 cm., de espesor igual que se encuentra como soporte del pavimento en el rodaje. Una vez construido los carriles del rodaje se deberán completar los 21 cm., con material base y colocar una capa de 5cm., de mezcla asfáltica en caliente. El valor de SN total es de 2.97, lo cual es suficientemente alto para soportar el tráfico.

La intención en el diseño es mantener la sección típica existente, ó sea el mismo ancho de carriles, y hombros.

Flexible Pavemen	nt Analysis		
Structural Number Design E 18's 20,	4.10 ,344,560		
Reliability Overall Deviation (*)	98.88 0.45		
Soil Resilient Mod.(*) Initial Serviceability Terminal Serviceability	17,579 4.20 2.50	UNITS No Units	
Structural Number	4.18		
PgDn FOR LAYER DETERMIN	TION"		

Flexible Pavement Analy	sis	
Structural Mumber Design E 18's 20,344,566		
Reliability 90.00 Overall Deviation (*) 0.45		
Soil Resilient Mod.(*) 24,249 Initial Serviceability 4.26 Terminal Serviceability 2.56	No U	IIS nits
Structural Number 3.64		
PgDn FOR LAYER DETERMINATION		

CUADRO DE CALCULO DE EJES EQUIVALENTES CON TPDA
PROYECTO: CA02 TRAMO DESVIODE ZACATECOLUZA - LIMITE DEPARTAMENTALUSULUTAN
FECHA: 07 DE ABRIL DE 2006

1,472	0.0810	18,177	100	18,177	30,295	30,295	(J)	100	SENCILLO		
1,472	0.0810	18,177	100	18,177	30,295	30,295	OI	100	SENCILLO	RASTRA	T2-S1
1,472	0.0810	18,177	100	18,177	30,295	30,295	(J)	100	ADELANTE		
807,563	1.1800	684,375	100	684,375	1,140,625	1,140,625	20	100	TRIDEM		
1,026,563	1.5000	684,375	100	684,375	1,140,625	1,140,625	16	100	TRIDEM	RASTRA	T3-S3
55,434	0.0810	684,375	100	684,375	1,140,625	1,140,625	O	100	ADELANTE		
4,649,918	1.5000	3,099,945	100	3,099,945	5,166,575	5,166,575	16	100	TANDEM		
4,649,918	1.5000	3,099,945	100	3,099,945	5,166,575	5,166,575	16	100	TANDEM	RASTRA	T3-S2
251,096	0.0810	3,099,945	100	3,099,945	5,166,575	5,166,575	Ŋ	100	ADELANTE		
1,361,318	1.5000	907,545	100	907,545	1,512,575	1,512,575	16	100	TRÁS-TANDE		
73,511	0.0810	907,545	100	907,545	1,512,575	1,512,575	O1	100	ADELANTE	CAMION	C-3
6,008,637	1.5800	3,802,935	100	3,802,935	6,338,225	6,338,225	10	100	ATRÁS		
308,038	0.0810	3,802,935	100	3,802,935	6,338,225	6,338,225	O	100	ADELANTE	CAMION	<u>۹</u>
679,657	0.6010	1,130,877	100	1,130,877	1,884,795	1,884,795	8	100	ATRÁS		
197,903	0.1750	1,130,877	100	1,130,877	1,884,795	1,884,795	o	100	ADELANTE	BUS	PP
18,277	0.0320	571,152	100	571,152	951,920	951,920	4	100	ATRÁS		
5,712	0.0100	571,152	100	571,152	951,920	951,920	ω	100	ADELANTE	MINIBUS	5
201,300	0.0100	20,130,042	100	20,130,042	33,550,070	33,550,070	ω	100	ATRAS	PICK-UP	
40,260	0.0020	20,130,042	100	20,130,042	33,550,070	33,550,070	2	100	ADELANTE	CAMIONETA	<u>Г</u>
2,520	0.0002	12,600,384	100	12,600,384	21,000,640	21,000,640		100	ATRÁS		
2,520	0.0002	12,600,384	100	12,600,384	21,000,640	21,000,640	_	100	ADELANTE	AUTOS	5
ESAL,S DE DISEÑO 20 AÑOS	ESAL,S FACTOR	TPD FINAL DE DISEÑO	%DE DISTRIBLICION DECARGA	TPD POR CARRIL DE DISENO 60%	TPD POR 2 SENTIDOS 100%	TPDA 20 AÑOS	PESODE EJE TONELADAS	%DE; VEHOLLOS CARGADOS	UBICACIÓN DEEJESY TIPO	CLASIFICACION DE VEHICULOS	CLASIFIC VEHIO

NOTA:

^{*} LOS FACTORES DE ESAL,S HAN SIDO TOMADOS TOMADOS DEL MANUAL CENTROAMERICANO PARA DISEÑO DE PAVIMENTOS * TRAFICO CONSIDERADO EN UN SENTIDO, CAMIONES CARGADOS AL 100% * DATOS TOMADOS DE PROYECCIONES DE TRANSITO CUADRO 5, DE LA UNIDAD DE PLANIFICACION VIAL GERENCIA DE ESTUDIO Y DISEÑOS VIALES DEL MOP.

SELECCIÓN DE PAVIMENTO PARA EL PROYECTO

 Según las Bases del Contrato se requiere Diseños de la estructura del pavimento basados en una investigación para determinar la resistencia de materiales en el pavimento existente y el tráfico proyectado a los 20 años.

También requiere alternativas de Diseño utilizando diferentes materiales y métodos con sus respectivos costos estimados.

La selección de la alternativa del tipo de pavimento será por el análisis de costo más favorable durante el ciclo del uso del pavimento en los 20 años y el funcionamiento del mismo. Para ayudar en el proceso del análisis será utilizado un programa de computación para ayudar en la selección de alternativas.

2. La firma ha realizado la investigación en el campo y ensayos en el laboratorio para obtener los valores estructurales SN del pavimento existente y el estudio de tráfico para calcular el ESAL, ejes equivalentes, acumulados en los 20 años.

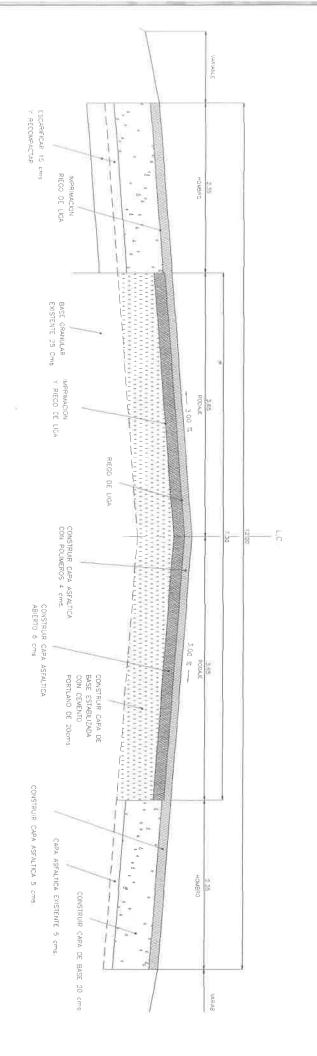
Con los datos ya mencionados la firma diseño un pavimento de asfalto y con la optimización de los materiales existentes se realizo una capa de reciclado con cemento Pórtland y sobre estas capas de asfalto polimerizados para dar más durabilidad que el concreto asfáltico en caliente normal.

La otra alternativa de pavimento fue diseñada con concreto hidráulico como sobrecapa del asfalto existente.

- 3. Los comentarios sobre los dos diseños de pavimentos son los siguientes:
 - 3.1 El concreto hidráulico es un material más durable, como se ha demostrado al compararlo con el concreto asfáltico, debido a que se mantiene su forma y superficie por más tiempo a pesar de la carga del tráfico a la que es expuesto.
 - 3.2 Las losas del concreto hidráulico cuenta con un asiento excelente siendo que las capas asfálticas existentes no muestran lugares de asentamientos, ni problemas de hinchamiento por suelos expansivos.
 - También la estructura de asfalto cuentan con un asiento excelente como no hay problemas de asentamiento o hinchamiento del pavimento existente.
 - 3.3 El pavimento de concreto hidráulico tiene ventajas sobre el pavimento asfáltico en cuanto al mantenimiento. El pavimento asfáltico requiere mantenimiento más temprano y frecuente con la aplicación de sellos de grietas, sellos de superficie,

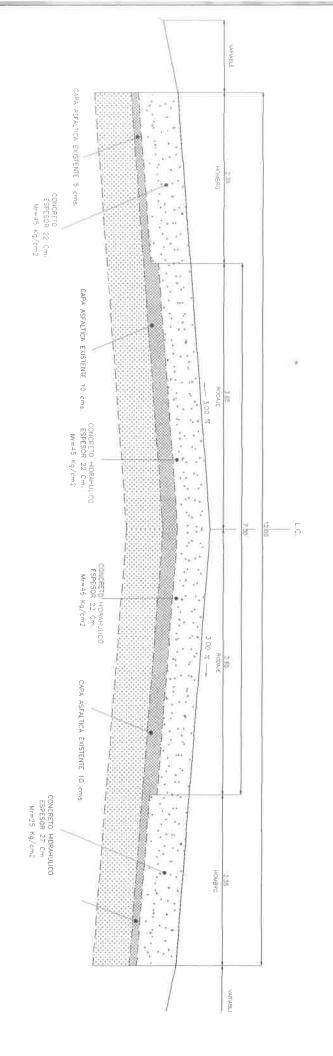
- bacheo y recarpeteo antes de los 20 años de uso o sea un deterioro mas rápido que el concreto hidráulico.
- 3.4 Durante el período de construcción la colocación de concreto hidráulico es mucho mas rápido que las varias capas asfálticas
- 3.5 La capa de concreto hidráulico se coloca en una sola capa resultando en menos disturbios al tráfico comparado con el pavimento asfáltico donde la desviación del tráfico estará afectada por cada capa como de reciclado, la capa de asfalto intermediario y capa final de rodadura.
- 3.6 El concreto hidráulico mantiene el valor IRI a niveles más bajos y constante durante los 20 años de servicio que el asfalto cuya superficie en pocos años requiere tratamientos para mantener la superficie en un nivel de servicio aceptable.
- 3.7 Los datos de las dos alternativas del diseño de pavimento se introducen en un programa de computación llamado HDM-4, para la evaluación técnica y económica del proyecto que toma en cuenta el costo de intervenciones, costo de beneficio del usuario y comparación económica y funcional de las alternativas del proyecto, durante los 20 años.

Como se ha explicado en los párrafos anteriores el pavimento de asfalto es menos durable y requiere más intervenciones como sello de grietas, bacheo y recarpeteo que no se realizan en el pavimento hidráulico sino solamente sello de sisas. Todas estas intervenciones tienen un costo acumulado más el costo inicial del proyecto.


Según los cálculos de costos iniciales estimados de la construcción, el pavimento de asfalto es de \$ 277,483 por Km. y el costo del concreto es de \$ 230,907 por km., resultando en un 17% menos para el pavimento de concreto.

Con la evaluación de los datos del HDM-4, se encuentra para el concreto un incremento de costo para el mantenimiento durante los 20 años de unos 23%, en cambio el pavimento asfáltico cuenta con un incremento del 98%, mayormente con la intervención en el año 10, en la que se realice el fresado y colocado los 12 cms. En lugar de la intervención anterior por ejemplo si solamente se coloca un recarpeteo de 10 cms. aun hay un incremento que asciende a 50% mas sobre el costo inicial.

4. CONCLUSIONES


Después de lo expuesto anteriormente y cumpliendo con lo estipulado en las bases, la firma recomienda la construcción del pavimento de concreto hidráulico, según los detalles indicados en los diseños con ayuda de programas computarizados y el estudio de HDM-4. También se encontraran los detalles en los planos de construcción.

SECCION TIPO CA02E: TRAMO DESVIO ZACATECOLUCA - LD **CONCRETO ASFALTICO USULUTAN**

SECCION TIPO CA02E: TRAMO DESVIO ZACATECOLUCA - LD **USULUTAN**

CONCRETO HIDRAULICO

